Impact of Halide Alloying on the Phase Segregation of Mixed‐Halide Perovskites

Lilly JRS, Lim VJ, Patel JB, Yan S, Lee JE, Johnston MB, Herz LM

Mixed‐halide perovskites are ideal mid‐ and wide‐gap absorbers for multijunction solar cells, but stable photovoltaic performance is severely hampered by halide segregation. This study reveals that crystalline film quality and halide segregation are critically affected by bromide fraction x in CH3NH3Pb(I1−xBr x )3 because of macrostrain and ordered‐phase formation. X‐ray diffractometry across stoichiometries spanning 22 bromide fractions demonstrates that central compositions near x = 0.5 form two macrostrained phases, which exhibit halide segregation under light at different rates. While the overall amplitude of phase segregation follows a broadly symmetric distribution in compositional space, maximized near x = 0.5, the potentially ordered compositions of CH3NH3PbIBr2 and CH3NH3PbI2Br diverge sharply, presenting particularly stable and unstable scenarios, respectively. Notably, halide segregation is shown to occur even below the widely quoted perceived threshold of x = 0.2. Such analysis highlights promising approaches to mitigate halide segregation, through engineering of macrostrained phases and local atomistic ordering. Together, these observations provide crucial benchmarks for proposed models of halide segregation and establish new routes toward segregation‐resistant materials for multijunction perovskite‐based photovoltaics.

Keywords:

stability

,

metal halide perovskites

,

halide segregation

,

strain

,

solar cells